GEODESICS OF THE SYNECTIC METRIC

Melek Aras¹

¹Department of Mathematics, Faculty of Arts and Sciences, Giresun Universty Giresun, Turkey

e-mail: melekaras25@hotmail.com, melek.aras@giresun.edu.tr

Abstract. The main purpose of the paper is to investigate geodesics on the tangent bundles $T(M_n)$ of the Riemannian manifold with respect toy the Levi-Civita connection of the synectic metric ${}^Sg={}^Cg+{}^Va$, where Cg -complete lift of the Riemannian metric, Va -vertical lift of the symmetric tensor field a.

Keywords: geodesics, synectic metric, vertical and complete lift.

AMS Subject Classification: 53C22, 53C25, 53C07.

1. Introduction

Let M_n be an n-dimensional differentiable manifold of class C^{∞} and $T_p(M_n)$ the tangent space at a point P of M_n , that is, the set of all tangent vectors of M_n at P. Then the set

$$T(M_n) = \bigcup_{P \in M_n} T_p(M_n),$$

is by definition, tangent bundle over the manifold M_n [2]. We denote by $\mathfrak{I}_q^p(M_n)$ the set of all tensor fields of type (p,q) in M_n and by $\pi:T(M_n)\to M_n$ the natural projection over M_n . For $U\subset M_n$, $\left(x^i,x^i\right)$, i=1,...n and i'=n+1,...,2n are local coordinates in a neighborhood $\pi^{-1}(U)\subset T(M_n)$. If $\left\{U',x^i\right\}$ is another coordinate neighborhood in M_n containing the point $P=\pi(\widetilde{P})$ ($P\in U$ and $\widetilde{P}\in T_p(M_n)$), then $\pi^{-1}(U')$ contains \widetilde{P} and the induced coordinates of \widetilde{P} with respect to $\pi^{-1}(U')$ will be given by

$$x^{i'} = x^{i'} (x^{i})$$

$$x^{\bar{i}'} = v^{i'} = \frac{\partial x^{i'}}{\partial x^{i}} v^{i} = x^{\bar{i}} \frac{\partial x^{i'}}{\partial x^{i}}$$

and the Jacobian is given by the matrix

$$A = \begin{pmatrix} \frac{\partial x^{i}}{\partial x^{I}} \end{pmatrix} = \begin{pmatrix} \frac{\partial x^{i}}{\partial x^{i}} & \frac{\partial x^{i}}{\partial x^{i}} \\ \frac{\partial x^{\overline{i}}}{\partial x^{i}} & \frac{\partial x^{\overline{i}}}{\partial x^{\overline{i}}} \end{pmatrix} = \begin{pmatrix} \frac{\partial x^{i}}{\partial x^{i}} & 0 \\ \frac{\overline{x^{s}} \partial^{2} x^{i}}{\partial x^{s} \partial x^{i}} & \frac{\partial x^{i}}{\partial x^{s}} \end{pmatrix}.$$

Let M_n be a Riemannian manifold with metric g whose components in a coordinate neighborhood U are g_{ji} and denote by Γ^h_{ji} the Christoffel symbols formed with g_{ji} . In the neighborhood $\pi^{-1}(U)$ of $T(M_n)$, U being a neighborhood of M_n , we put

$$\delta y^h = dy^h + \Gamma_i^h dx^i$$

with respect to the induced coordinates (x^h, y^h) in $\pi^{-1}(U) \subset T(M_n)$, where

$$\Gamma_i^h = y^j \Gamma_{ii}^h$$
.

Suppose that there is given the following Riemannian metric

$${}^{s}\tilde{g}_{CB}dx^{C}dx^{B} = a_{ii}dx^{j}dx^{i} + 2g_{ii}dx^{j}\delta y^{i}$$

$$\tag{1}$$

in the tangent bundle in $T(M_n)$ over a Riemannian manifold M_n with metric g, where a_{ji} are components of a symmetric tensor field of type (0,2) in M_n . We call this metric the synectic metric. The synectic metric ${}^{S}g = {}^{C}g + {}^{V}a$ has components [3]

$${}^{s}g = ({}^{s}\tilde{g}_{CB}) = \begin{pmatrix} a_{ji} + \partial g_{ji} & g_{ji} \\ g_{ji} & 0 \end{pmatrix}$$
 (2)

where $\partial g_{ii} = x^{\bar{s}} \partial_s g_{ii}$.

The metric connection $\overline{\nabla}$ has components $\overline{\Gamma}_{AB}^{N}$ such that

$$\overline{\Gamma}_{ji}^{h} = \Gamma_{ji}^{h}, \ \overline{\Gamma}_{j\bar{i}}^{h} = 0, \ \overline{\Gamma}_{j\bar{i}}^{h} = 0, \ \overline{\Gamma}_{j\bar{i}}^{h} = 0, \ \overline{\Gamma}_{j\bar{i}}^{h} = 0$$

$$\overline{\Gamma}_{ii}^{\bar{h}} = \partial \Gamma_{ii}^{h} - y^{k} K_{kii}^{h}, \ \overline{\Gamma}_{i\bar{i}}^{\bar{h}} = \Gamma_{ii}^{h}, \ \overline{\Gamma}_{j\bar{i}}^{\bar{h}} = \Gamma_{ii}^{h}$$

with respect to the induced coordinates in $T(M_n)$, where Γ_{ij}^k are components of ∇ in $M_n[4]$.

2. Levi-Civita connection of ^Sg

Components of the Riemannian connection determined by the metric ${}^{S}g$ are given by

$${}^{S}\Gamma_{JJ}^{K} = \frac{1}{2} \widetilde{g}^{KM} \left(\partial_{J} {}^{S} g_{MJ} + \partial_{I} {}^{S} g_{JM} - \partial_{M} {}^{S} g_{JJ} \right), \tag{3}$$

where \widetilde{g}^{KM} are the contravariant components of the metric ${}^S g$ with respect to the induced coordinates in $T(M_n)$ and

$$\widetilde{g}^{CB} = \begin{pmatrix} 0 & g^{ij} \\ g^{ij} & x^{\overline{s}} \partial_s g^{ij} - a^{ij} \end{pmatrix}, \quad a^{ij}_{..} = g^{it} a_{is} g^{sj}, \tag{4}$$

where g^{ij} denote the contravariant components of g in M_n [4], i.e.,

$${}^{S}g_{IM}\widetilde{g}^{MJ} = \delta_{I}^{J} = \begin{cases} 0, I \neq J \\ 1, I = J. \end{cases}$$

$$(5)$$

Then, taking account of (2) and (4), we have

$${}^{s}\Gamma_{ij}^{k} = \Gamma_{ij}^{k} ; {}^{s}\Gamma_{\bar{i}j}^{\bar{k}} = {}^{s}\Gamma_{i\bar{j}}^{\bar{k}} = {}^{s}\Gamma_{\bar{i}\bar{j}}^{\bar{k}} = {}^{s}\Gamma_{\bar{i}\bar{j}}^{\bar{k}} = 0 ,$$

$${}^{s}\Gamma_{i\bar{i}}^{\bar{k}} = \Gamma_{ij}^{k} ; {}^{s}\Gamma_{\bar{i}\bar{j}}^{\bar{k}} = \Gamma_{ij}^{k} ; {}^{s}\Gamma_{i\bar{j}}^{\bar{k}} = x^{\bar{i}}\partial_{t}\Gamma_{ij}^{k} + H_{ij}^{k}$$

$$(6)$$

with respect to the induced coordinates in $T(M_n)$, Γ_{ij}^k being Christoffel symbols constructed with g_{ij} . Here $H_{ij}^k = \frac{1}{2} g^{ks} \left(\nabla_i a_{sj} + \nabla_j a_{is} - \nabla_s a_{ij} \right)$ is a tensor of type (1,2) and $\nabla_k a_{ij} = \partial_k a_{ij} - \Gamma_{ki}^l a_{lj} - \Gamma_{kj}^l a_{il}$.

The vertical lifts ${}^V H$ of $H \in T^{-1}_2(M_n)$ has components ${}^V H^{\bar{k}}_{ji} = H^k_{ji}$, all the others being zero with respect to the induced coordinates in $T(M_n)$.

From (6) we hence have

Remark 1. If $\nabla a = 0$, then ${}^{S}\Gamma = {}^{C}\Gamma$, where ${}^{S}\Gamma$ is Riemannian connection of ${}^{C}g$ [4].

Remark 2. If $a_{ii} = g_{ii}$, then ${}^{S}\Gamma = {}^{C}\Gamma$.

Thus we have

Theorem 3. ${}^{S}\Gamma = {}^{C}\Gamma + {}^{V}H$, where ${}^{V}H$ is vertical lift of $H \in T_{2}^{1}(M_{n})$.

3. Geodesics in $T(M_n)$ with ^{S}g

Let $\widetilde{C}:[0,1] \to T(M_n)$ be a curve in $T(M_n)$ and suppose that \widetilde{C} is expressed locally by $x^A = x^A(t)$, i.e., $x^h = x^h(t)$, $x^{\overline{h}} = x^{\overline{h}}(t) = y^h(t)$ with respect to the induced coordinates (x^h, y^h) in $\pi^{-1}(U) \subset T(M_n)$, t being a parameter. Then the curve $C = \pi \circ \widetilde{C}$ in M_n is called the projection of the curve \widetilde{C} and denoted by

 $\pi \widetilde{C}$ which is expressed locally by $x^h = x^h(t)$. The the curve \widetilde{C} having the local expression $x^h = x^h(t)$, $y^h = dx^h/dt$ in $T(M_n)$ is called the natural lift of the curve C and denoted by C^* [4, p.57].

The geodesics of the connection ${}^{S}\nabla$ is given by differential equations

$$\frac{d^2x^A}{dt^2} + {}^S\Gamma^A_{CB}\frac{dx^C}{dt}\frac{dx^B}{dt} = 0 \tag{7}$$

with respect to the induced coordinates $(x^h, x^{\widetilde{h}})$, where t is an affine parameter of \widetilde{C} . By means of (6), (7) reduces to

$$\begin{cases} (a) & \frac{d^{2}x^{h}}{dt^{2}} + \Gamma_{ji}^{h} \frac{dx^{j}}{dt} \frac{dx^{i}}{dt} = 0\\ (b) & \frac{d^{2}y^{h}}{dt^{2}} + (\partial_{k}\Gamma_{ji}^{h})y^{k} \frac{dx^{j}}{dt} \frac{dx^{i}}{dt} + 2\Gamma_{ji}^{h} \frac{dx^{j}}{dt} \frac{dx^{i}}{dt} + H_{ji}^{h} \frac{dx^{j}}{dt} \frac{dx^{i}}{dt} = 0, \end{cases}$$
(8)

where Γ^h_{ji} denote components of ∇ in M_n .

Those we have

Theorem 4. Let \widetilde{C} be a curve in $T(M_n)$ and locally expressed by $x^h = x^h(t)$, $y^h = y^h(t)$ with respect to the induced coordinates $\left(x^h, x^{\overline{h}}\right)$ in $T(M_n)$. The curve \widetilde{C} is a geodesics of ${}^S g$, if it satisfies the equations (8).

We transform (8, (b)) as follows:

$$\frac{d}{dt} \left(\frac{dy^h}{dt} + \Gamma_{ji}^h \frac{dx^j}{dt} y^i \right) + \Gamma_{ka}^h \frac{dx^k}{dt} \left(\frac{dy^a}{dt} + \Gamma_{ji}^a \frac{dx^j}{dt} y^i \right) + \left(\partial_k \Gamma_{ji}^h - \partial_j \Gamma_{ki}^h + \Gamma_{ka}^h \Gamma_{ji}^a - \Gamma_{ja}^h \Gamma_{ki}^a \right) y^k \frac{dx^j}{dt} \frac{dx^i}{dt} + H_{ji}^k \frac{dx^j}{dt} \frac{dx^i}{dt} = 0.$$
(9)

If we put

$$\frac{\delta y^h}{dt} = \frac{dy^h}{dt} + \Gamma_{ji}^h \frac{dx^j}{dt} y^i$$

then (9) may be written as follows:

$$\frac{\delta^2 y^h}{dt^2} + \left(R_{kji}^h y^k + H_{ji}^h \right) \frac{dx^j}{dt} \frac{dx^i}{dt} = 0,$$
 (10)

 R_{ji}^h denoting the components of the curvature tensor R of ∇ , which shows that the vector field $y^h(t)$ in M_n defined along $C = \pi \widetilde{C}$ is H-Jacobi field along C, where C is a geodesic in M_n , because of (8, (a)). In particular, if H = 0, we have Jacobi vector field along C.

Hence we have the theorem

Theorem 5. Let \widetilde{C} be a geodesic in $T(M_n)$ with respect to the lift ${}^s\nabla$ of an affin connection ∇ in M_n to $T(M_n)$ and locally expressed by $x^h = x^h(t)$, $y^h = y^h(t)$ relative to the induced coordinates. Then the projection $C = \pi \widetilde{C}$ is a geodesic in M_n with respect to ∇ and the vector field y'(t) defined along C is a H-Jacobi field along geodesic C.

As a direct consequence of (8, (a)) and (10) with $y^h = dx^h/dt$ such that $\frac{\delta(dx^h/dt)}{dt} = 0$, we have

Theorem 6. Let \widetilde{C} be a geodesic in $T(M_n)$ with respect to an affine connection ∇ . The its natural lift C^* is a geodesic in $T(M_n)$ with the metric S^*g .

A differentiable manifold with affine connection is said to be complete if, along an arbitrary geodesic C, there is a point P corresponding to an arbitrarily given value of affine parameter measured from a point of C. Thus we have this final theorem

Theorem 7. If M_n is complete with respect to an affine connection ∇ , then $T(M_n)$ is complete with respect to ${}^S\nabla$, an vice versa.

References

- 1. Hayden A. Subspaces of a spaces with torsion, Proc. London Math. Soc., vol.2, N.34, 1934, pp.27-50.
- 2. Steenrod N. The topology of fibre bundles, Princeton Univ. Pres. Princeton, N.Y., 1951.
- 3. Vishnevskii V., Shirokov A.P., Shurygin V.V. Spacrs over algebras. Kazan, Kazan State Univ., 1985.
- 4. Yano K., Ishihara S. Tangent and cotangent bundles, Marcel Dekker Inc. New York, 1973.

Sinektik metrikaların geodeziyası

Melek Aras

XÜLASƏ

Məqalədə sinektik ${}^Sg={}^Cg+{}^Va$ metrikasının Levi-Civita əlaqəsinə nəzərən Riman çoxobrazlısının $T(M_n)$ toxunan dəstəsinin geodeziyası öyrənilir. Burada Cg -Riman metrikasının tam lifti, Va -simmetrik tenzor sahəsinin şaquli liftidir.

Açar sözlər: sinektik metrika, geodeziya, toxunan dəstə, Riman metrikası.

Геодезия синектических метрик

Мелек Арас

РЕЗЮМЕ

Основным объектом исследования статьи является геодезия касающихся пучков $T(M_n)$ Риманова многообразия относительно связи Levi-Civita синектической метрики ${}^Sg={}^Cg+{}^Va$, где Cg - полный лифт Римановой метрики, Va - вертикальный лифт симметрического тензорного поля.

Ключевые слова: синектическая метрика, геодезия, касающийся пучок, Риманова метрика.