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Abstract. The main purpose of the paper is to investigate geodesics on the tangent bundles
T(l\/l n) of the Riemannian manifold with respect toy the Levi-Civita connection of the
synectic metric s g=Cg+V a, where © g -complete lift of the Riemannian metric, Va-
vertical lift of the symmetric tensor field a.
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1. Introduction

Let M,be an n-dimensional differentiable manifold of class C* and

Tp (IVI n ) the tangent space at a point P of M, that is, the set of all tangent vectors
of M, at P. Then the set

T(Mn)= UTp(Mn)’

PeM,

is by definition, tangent bundle over the manifold M | [2] We denote by 3 g (l\/l n)
the set of all tensor fields of type (p,q) in M, and by ﬁ:T(Mn)—> M, the
natural projection over M. For U c M, (Xi ,Xi. ), i=L.nandi =n+1L..2n
are local coordinates in a neighborhood 7~'(U)cT(M,). If iJ',Xi’} is another
coordinate neighborhood in M, containing the point P = 7[(5) (PeU and

P eTp(Mn)), then 7' (U ) contains P and the induced coordinates of P with

N (Xi)

i i ox' i
=V =—v

respect to 77" (U ) will be given by

ISRV
ox' ox'

X

and the Jacobian is given by the matrix
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A:{@J: ' ox|_| ox
x )l o | | xex o
ox' ox ox°ox' ox

Let M, be a Riemannian manifold with metric § whose components in a
coordinate neighborhood U are g; and denote by I r}i the Christoffel symbols
formed with g;. In the neighborhood 77'(U)  of T(M,), U being a
neighborhood of M, we put

Sy" =dy" +T7dx’
with respect to the induced coordinates (x",y") in 77'(U) c T(M, ), where

=y rj.
Suppose that there is given the following Riemannian metric
*GepdXx dx® =a dx’dx' +2g,dx’ Sy’ (1)

in the tangent bundle in T(M,) over a Riemannian manifold M, with metric g,
where @; are components of a symmetric tensor field of type (0,2) in M.

We call this metric the synectic metric. The synectic metric Sg:Cg+Va has
components [3]

2

s s~ a;+a9; 9;
g:(gcs)z( : : J]

9ji 0
where 09 ;; = Xgasg i

The metric connection V has components f,l\'B such that
I =T}, Th=0T}=0,T)=0,T]=0

T} =or} -y*Ky, Tf =T}

T+=h _ 1h
kji 2 ji F]i_r

ji
with respect to the induced coordinates in T(M ), where l"i;‘ are components of
Vin M [4].
2. Levi-Civita connection of °g

Components of the Riemannian connection determined by the metric °g are

given by
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SFJT ZEQKM(aJSgMI+aISgJM _aMSgJI)’ 3)

where gKM are the contravariant components of the metric ° g with respect to the

induced coordinates in T(M ) and

goe =| © g’ a¥=g"a,g” (4)
9= = gl xo.gi-al) = =0 259",
where 9" denote the contravariant components of g in M, [4], ie.,
0,1=J
Sy aM _ o) J
=0 = 5
9m9 I {LI _ ()

Then, taking account of (2) and (4), we have
sk _ pk .spk _ sk _ sk _ sk _
L =T Fﬁ.— Fﬁ— Fﬁ— FH—O,

j ?
Te =Ty : Ty =Ty °Tf =x'0,T +Hj (6)

ij ° ij

with respect to the induced coordinates in T(M,), Fi:-( being Christoffel symbols

s ij

1
constructed with g; . Here H i'j( = > g* (Viasj +V,a,-V a..) is a tensor of type

(1,2)and V,a; = 0,8; —I'ya, —[,a,.
The vertical lifts YH of HeT IZ(M n) has components ¥ H E =H T, , all the
others being zero with respect to the induced coordinates in T(M ).
From (6) we hence have
Remark 1. If Va=0, then Sr=°r , where T is Riemannian connection of © g

[4].
Remark 2.1If a; = gy, then *I=T.

Thus we have
Theorem 3. ST'=°T+"H , where Y H is vertical lift of H € T 12(M N )

3. Geodesicsin T(M ) with °g

Let C:[0,1]]>T(M,) bea curvein T(M,) and suppose that C is expressed
locally by x* = XA(t), ie, x" = Xh('[), X" = Xﬁ(t): y"(t) with respect to the
induced coordinates (Xh , y“) in z'(U)cT(M,), t being a parameter. Then the

curve C=70C in M , 1is called the projection of the curve C and denoted by
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#C which is expressed locally by x"=x" ('[) The the curve C having the local
expression X" = x"(t), y" =dx"/dt in T(M,) is called the natural lift of the
curve C and denoted by C* [4, p.57].

The geodesics of the connection °V is given by differential equations
2 A C B
d x2 LSTA dx™~ dx _0 o
dt dt dt

with respect to the induced coordinates (Xh X" ), where t is an affine parameter of

C. By means of (6), (7) reduces to
2, h j
(a) d=x + Jhl dx dX _
dy" K dx dx h dxJ dx n dx! dx!'
b + (0, h 22 22
b) dt? Oy at dt T dr de o dt dt

where Fjr} denote components of V in M

— Y

Those we have
Theorem 4. Let C be a curve in T(M,) and locally expressed by x" = x" (’[),

y" = yh(t) with respect to the induced coordinates (Xh,XH) in T(M,). The

curve C isa geodesics of g, if it satisfies the equations (8).
We transform (8, (b)) as follows:

i k a i
d(dy" +thidiy' +T) o [ dy +I ox v+
di| dt dt dt { dt dt

. ©)
dxJ dx dx’ dx'
h h h k
If we put
h h i
5y_ = dL + r‘lhl di !
dt dt dt
then (9) may be written as follows:
Siy" bk on\dxd dx!
+\RGY +HI )| ——=0, 10
dt2 ( klly Jl) dt dt ( )

R; denoting the components of the curvature tensor R of V , which shows that the

vector field yh ('[) in M, defined along C = 2C is H-Jacobi field along C, where
Cis ageodesicin M, because of (8, (a)). In particular, if H = 0, we have Jacobi

vector field along C.
Hence we have the theorem
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Theorem 5. Let C be a geodesic in T(M ) with respect to the lift *V of an
affin connection Vin M to T(M_) and locally expressed by X" = Xh(t),

y'=y" (’[) relative to the induced coordinates. Then the projection C = C isa

geodesic in M, with respect to V and the vector field % (’[) defined along C is a
H- Jacobi field along geodesic C.
As a direct consequence of (8, (a)) and (10) with y" =dx" / dt such that
S(dx" /at)
dt

Theorem 6. Let C bea geodesicin T(M,) with respect to an affine connection

=0, we have

V. The its natural lift C* is a geodesic in T(M,) with the metric °g .

A differentiable manifold with affine connection is said to be complete if,
along an arbitrary geodesic C, there is a point P corresponding to an arbitrarily
given value of affine parameter measured from a point of C . Thus we have this
final theorem

Theorem 7. If M is complete with respect to an affine connection V, then

T(M,) is complete with respect to ° V, an vice versa.
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Sinektik metrikalarin geodeziyasi
Melek Aras

XULASO

Mogqalodo sinektik s g :°g+Va metrikasinin Levi-Civita olagosine nazoron Riman
coxobrazlisinin T(I\/In) toxunan dostosinin geodeziyasi Oyronilir. Burada Cg -Riman

metrikasinin tam lifti, ¥ @ -simmetrik tenzor sahosinin saquli liftidir.
Acar sozlar: sinektik metrika, geodeziya, toxunan dosto, Riman metrikasi.

I'eoxe3usi cHHEKTHYECKHUX METPHK
Meaek Apac
PE3IOME

OCHOBHBIM OOBEKTOM HCCIEJOBAHUA CTAaThbU SABIAETCS TIEOJE3Ms KaCAIOIUXCA
Iy4KOB T(Mn) PumanoBa  MHOroo0Opasus orHocurenbHo  cBsasu  Levi-Civita

. S~_Cnq, .V c o o
CHUHEKTHYeCKOi MeTpuku - = Qg+ a, rae (- nonubiid nudt PumanoBoit merpukwy,

v o
a - BEpTUKAJIBbHBIN JTUPT CHUMMETPUYECKOTO TEH30PHOTO MOJIS.
KiroueBble cjioBa: CHHEKTHYECKas METPHKA, TEOe3Msl, KacaroIlMiCs Iy4oK,
PumanoBa merpuxka.
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